

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский биотехнологический университет (РОСБИОТЕХ)»

ОЛИМПИАДА РОСБИОТЕХ

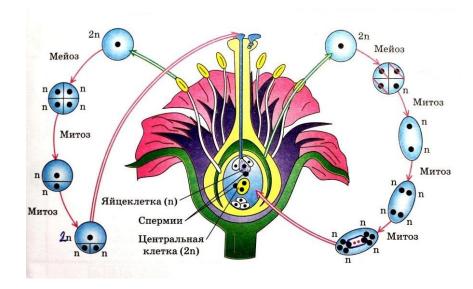
Олимпиадное испытание по общеобразовательному предмету «Биология»

11 класс

Демонстрационный вариант отборочного тура

Вариант разработан организационным комитетом Олимпиады РОСБИОТЕХ

Москва 2025г.


1. Гомойтермия типична для представителей классов:

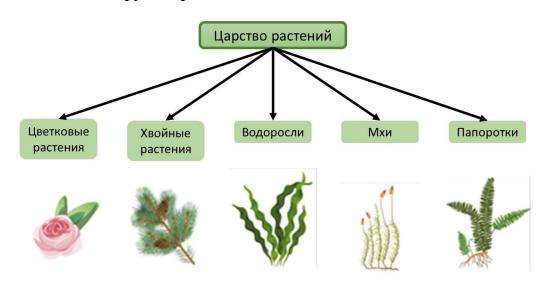
- 1) рыб;
- 2) амфибий;
- 3) рептилий;
- 4) птиц.

Ответ: 4 (10 баллов)

2. Двойное оплодотворение — это процесс размножения, характерный для цветковых растений, Этот уникальный процесс был открыт русским ботаником Навашиным С. Г. в 1898 году. В чём состоит биологический смысл этого процесса?

- 1) эндосперм развивается только после оплодотворения
- 2) образование эндосперма не связано с оплодотворением
- 3) образование эндосперма предшествует оплодотворению
- 4) образование эндосперма происходит за счет гаметофазы

Ответ: 1 (10 баллов)


3. В клетках семени голосеменных растений имеется набор хромосом

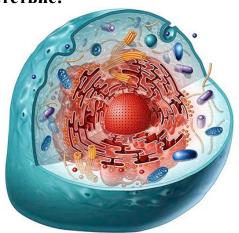
- 1. диплоидный и гаплоидный
- 2. диплоидный
- 3. гаплоидный
- 4. триплоидный

Ответ: 1 (10 баллов)

4. Установите, в какой хронологической последовательности появились на Земле основные группы растений.

- А) зеленые водоросли
- Б) хвощевидные
- В) семенные папоротники
- Г) псилофиты
- Д) голосеменные

Ответ: АГБВД (10 баллов)


5. Установите хронологическую последовательность процессов при эмбриональном развитии животных. Запишите соответствующую последовательность цифр.

- 1. образование двухслойного многоклеточного зародыша
- 2. дробление
- 3. гаструляция
- 4. образование однослойного многоклеточного зародыша
- 5. формирование нейрулы

Ответ: 2,4,3,1,5 (10 баллов)

6. Установите соответствие:

Преобладание следующих органелл...

- 1. гранулярная эндоплазматическая сеть, комплекс Гольджи
- 2. агранулярная эндоплазматическая сеть
- 3. гранулярная ЭПС, комплекс Гольджи, развитый лизосомальный аппарат
- 4. миофибриллы
- 5. микроворсинки на апикальной поверхности


характерно для клеток:

- а) фагоцитирующих
- б) всасывающих вещества
- в) способных сокращаться
- г) белоксинтезирующих
- д) синтезирующих липиды и углеводы

Ответ: 1-г, 2-д, 3-а, 4-в, 5-б (10 баллов)

7. Установите последовательность реакций каскада свёртывания

крови:

- А) Активация протромбиназы в присутствии белковых факторов свёртывания и ионов Ca2+
 - Б) Разрушение тромбоцитов
 - В) Превращение фибриногена в фибрин
 - Г) Превращение протромбина в тромбин
 - Д) Выделение тромбопластина из стенок повреждённых сосудов
 - Е) Полимеризация фибрина

Ответ: БДАГВЕ (10 баллов)

8. Установите последовательность расположения элементов обонятельного анализатора

- А) Обонятельный нерв
- Б) Носовая полость
- В) Кора головного мозга
- Г) Обонятельная луковица
- Д) Обонятельные рецепторы
- Е) Обонятельный тракт

Ответ: БДАГЕВ (10 баллов)

9. Среди популяции кур из 200 особей 9% имеют чёрную окраску оперения и 84 особи имеют серебристое оперение. Чёрная окраска не полностью доминирует над белой. Рассчитайте частоты аллелей чёрной и белой окраски в популяции, а также частоты всех возможных генотипов, если известно, что популяция находится в равновесии Харди-Вайнберга. Ответ поясните.

Показать ответ и решение

Элементы ответа:

- 1) чёрную окраску оперения имею особи с генотипом АА, серебристую особи с генотипом Аа, белую особи с генотипом аа;
- 2) в равновесной популяции доля особей с чёрной окраской оперения составляет p2 = 9% = 0.09;
- 3) частота аллеля р в популяции составляет 0,3;
- 4) частота аллеля q в популяции составляет 1-p=0,7;
- 5) частота генотипа Аа (серебристая окраска оперения) в равновесной популяции составляет 2pq = 0,42;
- 6) частота генотипа аа (белая краска оперения) в равновесной популяции q2 = 0,49.

(10 баллов)

10. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте. Найдите на данном участке палиндром и установите вторичную структуру центральной петли тРНК. Определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если антикодон равноудален от концов палиндрома. Объясните последовательность решения задачи. Для решения используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Первое основание	Второе основание				Третье основание
	$oldsymbol{y}$	Ц	\boldsymbol{A}	Γ	
y	Фен Фен Лей Лей	Cep Cep Cep Cep	Tup Tup —	Цис Цис — Три	У Ц А Г
Ц	Лей Лей Лей Лей	Про Про Про Про	Гис Гис Глн Глн	Арг Арг Арг Арг	У Ц А Г
A	Иле Иле Иле Мет	Tpe Tpe Tpe Tpe	Асн Асн Лиз Лиз	Сер Сер Арг Арг	У Ц А Г
Γ	Вал Вал Вал Вал	Ала Ала Ала Ала Ала	Acn Acn Глу Глу	Гли Гли Гли Гли	У Ц А Г

Ответ:

1. По принципу компементарности на основе транскрибируемой цепи ДНК определяем последовательность участка центральной петли тРНК:

- 2. Находим палиндромный участок (комплементарные части цепи тРНК): 5′-УУААЦЦ-3′ (3′-ААУУГГ-5′).
- 3. Вторичная структура тРНК:

- 4. По принципу комплементарности на основе антикодона тРНК (центральный триплет петли переориентируем в направлении: $3' \rightarrow 5'$) 3'- $AУ\Gamma$ -5'.
- 5. Определяем триплет иРНК: 5'-УАЦ-3'.
- 6. По таблице генетического кода и на основе кодона иРНК находим последовательность аминокислоту, которую переносит данная тРНК: тир. (10 баллов)